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Abstract— We present ArrayBot, a distributed manipulation
system consisting of a 16 × 16 array of vertically sliding
pillars integrated with tactile sensors. Functionally, ArrayBot is
designed to simultaneously support, perceive, and manipulate
the tabletop objects. Towards generalizable distributed manip-
ulation, we leverage reinforcement learning (RL) algorithms
for the automatic discovery of control policies. In the face of
the massively redundant actions, we propose to reshape the
action space by considering the spatially local action patch and
the low-frequency actions in the frequency domain. With this
reshaped action space, we train RL agents that can relocate
diverse objects through tactile observations only. Intriguingly,
we find that the discovered policy can not only generalize to
unseen object shapes in the simulator but also have the ability
to transfer to the physical robot without any sim-to-real fine-
tuning. Leveraging the deployed policy, we derive more real-
world manipulation skills on ArrayBot to further illustrate the
distinctive merits of our proposed system.

I. INTRODUCTION

The notion of robotic manipulation [5], [18] easily invokes
the image of a biomimetic robot arm or hand trying to
grasp tabletop objects and then rearrange them into desired
configurations inferred by exteroceptive sensors such as
RGBD cameras. To facilitate this manipulation pipeline, the
research community has made tremendous efforts in either
how to determine steadier grasping poses in demanding
scenarios [16], [45], [46], [32], [15] or how to understand
the exteroceptive inputs in a more robust and generalizable
way [33], [44], [34], [42], [30], [39]. Acknowledging these
progresses, we attempt to bypass the above challenges by
advocating ArrayBot — a reinforcement learning (RL) [20],
[31] driven and tactile observation only [17], [13], [43]
distributed manipulation [7] system, where the objects are
manipulated via numerous contact points.

Conceptually, the hardware of ArrayBot is a 16 × 16
array of vertically sliding pillars, each of which can be
independently actuated, leading to a 16× 16 action space.
Functionally, the pillars beneath a tabletop object can support
its weight and at the same time cooperate to lift, tilt, or
even translate it through proper motion policies. To equip
ArrayBot with proprioceptive sensing, we integrate each
pillar with a slim and low-cost Force Sensing Resistor (FSR)
sensor, allowing the robot to “feel” the object when lack
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Fig. 1: We present ArrayBot, a distributed manipulation system.
With the aim of generalizable manipulation, we train RL agents on
the simulated ArrayBot where the only accessible observation is
the tactile information. Afterwards, we deploy the learned control
policy to the physical robot, and showcase the bird’s-eye view of
the trajectories for real-world manipulation tasks: relocating novel-
shaped objects, manipulating two objects in parallel, trajectory
following, and manipulation under visual degradations. Please refer
to the videos on our project website.

of external visual inputs. Thanks to its distributed nature,
ArrayBot is flexible in size, inherently supports manipulation
in parallel, and has the potential to manipulate objects times
larger than the size of its end-effector.

Previous works for distributed manipulation show up in
the names of actuator array [6], [22], [36], [28], smart
surface [4], [9], or auxiliary functions of tangible user in-
terface [27], [12], [19]. Despite their promises to manipulate
tabletop objects, they heavily depend on pre-defined motion
primitives to fit the specific designs of the systems. With the
configurations (e.g., shapes, positions, etc.) of the manipu-
lated objects altering, human-determined rules may require
fine-tuned parameters or even a thorough redesign. Towards
distributed manipulation enjoying better generalizability and
versatility, we explore the feasibility of applying model-free
RL [20], [14], [31] to the automatic discovery of control
policies. However, compared with popular manipulators such
as arms or hands, controlling ArrayBot in its 2D-array action
space can be extremely challenging because the massive
redundancy of the actions makes the trial-and-error process
hopelessly inefficient.

In awareness of its redundancy, we propose to reshape the
action space with the objective to strengthen its inductive bias
towards more favorable actions for distributed manipulation.

https://steven-xzr.github.io/ArrayBot
https://steven-xzr.github.io/ArrayBot/
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Fig. 2: The hardware of ArrayBot is a 16×16 array of vertically sliding pillars. (a) The exploded view of an atom unit, which consists
of the actuator, the pillar, and the end-effector. (b) Every two atom units are assembled with one STM32 board as a modular unit.

To start with, we explicitly restrict the extend of the valid
action space to the 5×5 Local Action Patch centered around
the object. Meanwhile, we propose the idea of considering
Actions in the Frequency Domain via 2D Discrete Cosine
Transform (DCT) [1]. Our intuition is that each channel in
the frequency domain processes a spatially global horizon,
so a frequency-domain perspective may help promote the
collaborations among spatially neighboring pillars. On top of
the frequency transform, we further perform High Frequency
Truncation on the action channels. The rationale behind is
that lower-frequency actions may correspond to actions with
emergent semantics, e.g., the DC channel implies lifting, and
the base frequency implies tilting.

With the reshaped action space ready, we set up the
simulated ArrayBot in the Isaac Gym simulator [23] and train
model-free RL agents [31] that can respectively lift and flip
a cube. Going beyond the reach of simple non-generalizable
motion skills, we manage to acquire one generalizable policy
discovered by RL that is agnostic of both object shapes
and visual observations, but could transport diverse-shaped
previously unseen objects from and to arbitrary positions via
touch sensing alone. Interestingly, we find it might be easier
than expected to deploy the policy trained on the simulated
ArrayBot to the real-world machine. Without any sim-to-real
fine-tuning, the averaged success rate of the general relocate-
via-touch policy is tested to reach 74% on a batch of unseen
objects, leading to an already decent baseline.

Leveraging the general relocate-via-touch policy deployed
to the real world, we further illustrate the characteristic
merits of ArrayBot by presenting the following derived
manipulation skills — trajectory following by iteratively
calling the relocation policy, manipulating multiple objects
in parallel thanks to its distributed nature, and manipulation
under visual degradations due to no visual observations at all.
As the ending of this paper, we also envision the potential
applications that ArrayBot may empower in the future in
both industrial and household scenarios.

II. A SKETCH FOR THE HARDWARE DESIGN

The hardware of ArrayBot can be perceived as a 16×16
array of vertically sliding pillars. Each atom unit from down
to up consists of an actuator, a rectangular pillar whose
length-width-height is 16× 16× 200 mm, a slim and low-
cost Force Sensing Resistor (FSR) sensor that measures
the pressure, and a silicone hemispheric end-effector that
protects the tactile sensor and increases the frictions.

Actuator. The left side of Figure 2(a) is the actuator, which
is a DC gear motor. The rotational motion of the motor are
converted into the translational motion of the pillar through
a screw structure. A magnetic encoder is installed on the
rotating shaft to calculate the angle and angular velocity of
the motor, which are ultimately mapped into the vertical
position and speed of the joints. The effective range of
each vertically prismatic joint is 55 mm, whose maximum
motion speed is 53 mm/s. The movements of the joints are
controlled by STM32 microcontrollers, and the target actions
are executed via positional PID control.
End-effector. The right side of Figure 2(a) is the end-
effector, which has a silicone semi-spheric cap and an FSR
tactile sensor whose effective measuring range is 10∼200
grams. When an object is placed on the end-effector, its
pressure is transmitted through the silicone cap to the FSR
sensor. Since the pedestal which the sensor rests upon is
consistently sliding, we would better avoid the use of wires
when installing the sensor. Thus, we design a conductive
sliding rail embedded underneath the sensor connector for
both power supply and signal transmission.
Assembled modular unit. As shown in Figure 2(b), every
two atom units are assembled into a modular unit so as
to facilitate assembly and make the most of the STM32
microcontrollers. To diminish signal inferences, we employ 4
independent CAN buses for the communication between the
microcontrollers and the desktop host, where each CAN bus
takes charge of 32 modular units (i.e., 64 pillars). During
operation, each STM32 board receives and processes the
CAN commands from the desktop, and sends two PWM
signals respectively to the two motors under its control.

III. ACTION SPACE RESHAPING

The central challenge against the employment of RL for
distributed manipulation comes from the massive redundancy
in its unconventional action space. In this section, we present
a series of techniques to reshape the action space of ArrayBot
so that it is more favored for distributed manipulation.
Local Action Patch. The action space of ArrayBot is in the
shape of a 16× 16 array. Given the fact that the actuators
far away from the object could not make any physical
impact, we only consider a 5×5 Local Action Patch (LAP)
centered around the object. So far, an untouched detail is how
to determine the center of the local patch. If the ground-
truth object positions are accessible in the simulator, we
simply select the actuator that is closest to the center of the



object as the center of the LAP. Otherwise, we estimate the
object position through touch. More specifically, the noisy
readings of the 16 × 16 FSR sensor array are binarized
to enhance robustness, giving a tactile map that indicates
contact conditions. Since the measurements between 10∼13
grams are found to be unreliable sometimes, we set the rule
that if the reading of any FSR sensor is larger than 13 grams,
it is regarded to be in contact with the object above it. The
geometric center of all contact points is calculated as the
estimated position of the manipulated object.
Actions in the Frequency Domain. As clearly figuring
out the impact of every individual contact is virtually in-
solvable [2], [11] in a contact-rich environment, we focus
on the collective impacts of many actuators instead [12],
[36], [28]. On a methodology level, we propose to learn
Actions in the Frequency Domain since each frequency-
domain component may have a global impact in the spatial
domain. Hence, rather than directly predict a flattened 25-dim
delta positions, the policy network outputs a 25-dim delta
frequencies. Subsequently, the 25-dim output is unflattened
to the shape of 5×5 and then post-processed by a 2D inverse
Discrete Cosine Transform (iDCT) [1] operator to produce
the 5×5 action in the spatial domain.

High

Low

Fig. 3: The visualization of a
5×5 2D DCT map. We select
the lowest 6 frequency chan-
nels marked in green.

High Frequency Trunca-
tion. Besides a latent induc-
tive bias towards collabora-
tions, the frequency domain
also provides a valuable point
of view to re-inspect the re-
dundancy of the actions. Intu-
itively, lower-frequency chan-
nels lead to smooth planar
surfaces with semantics that
are likely to correspond to
emergent motion primitives.
For instance, the DC channel
implies lifting, and the base
frequency implies tilting. In comparison, high-frequency
channels mainly represent fine texture information, whose
impact on manipulation is relatively limited. Based on these
observations and inspired by image compression methods
such as JPEG [38], we propose to truncate the high-
frequency channels of the actions. Ultimately, the policy
network is designed to output a 6-dim prediction, which is
used to fill the lowest 6 frequency channels of the entire
predicted action in the frequency domain. To acquire a full
25-dim action ready for the inverse frequency transform, we
simply zero-pad the rest 19 channels of higher frequencies.

IV. LEARNING THE CONTROL POLICIES

A. Simulator Setup

The physical simulation of contact-rich interactions could
be time-consuming. To produce sufficient samples in an
efficient way so as to feed data-hungry RL algorithms, we
build the simulated environment in the Isaac Gym [23]
simulator. The frequency of the physical simulation steps
is 50 Hz. Due to the mechanical speed limit, we set the

frequency of RL control to be 5 Hz. Since the RL algorithm
considers the binarized outcome of the tactile sensor, we
simply retrieve the information from the contact buffer of
the simulator as the simulation of tactile sensors.

B. Environments

To verify the effectiveness of the proposed action space,
we devise the environment of lifting where ArrayBot is asked
to raise up a cubic block, and flipping where ArrayBot is
asked to flip the same block by 90 degrees. To explore the
full potential of our system, we also study a more challenging
setting of general relocate-via-touch where ArrayBot is
asked to relocate unseen-shaped objects from and to any
arbitrary positions through tactile sensing only.
States. The tasks of lifting and flipping directly make use of
the privileged position and orientation information provided
by the simulator. In general relocate-via-touch, we consider
a more realistic scenario where the only observation is the
binarized tactile information. The estimated states for general
relocate-via-touch are visualized in Figure 4.
Rewards. The tasks of lifting and flipping simply consider a
dense reward of object height and orientation respectively. In
general relocate-via-touch, apart from the dense reward of
object position, we add one more sparse bonus reward when
reaching the goal that would encourage the robot to timely
stop the object at the goal position.
Actions. At each step, the policy outputs a 6-dim action in
the frequency domain, which is post-processed to produce
the relative joint configuration on the 5×5 LAP.
Resets. We reset the episode if the tabletop object moves out
of the border or the episode length reaches 100 steps. With
the existence of the 5×5 LAP, we request that the center of
the object should locate on the central 11×11 patch.
Manipulated objects. In lifting and flipping, we manipulate
an 8×8×8 cm cubic block which can be roughly supported
by a 4×4 array of actuators. In general relocate-via-touch,
we train an RL agent that is generalizable to shape variance
by sampling 128 different shapes from the EGAD [25]
training set and then re-scaling them. At test time, we
evaluate the performance of the generalizable agent on the
EGAD test set with a total of 49 unseen object shapes. For
fast and accurate collision detection in the simulator, we
perform V-HACD [24] convex decomposition to all of the
object shapes before loading them into the simulator.

C. Training the RL Agents

For all the tasks, we train proximal policy optimization
(PPO) [31] agents on 128 parallel Isaac Gym environments
for the automatic discovery of control policies. Notably,
all of the 128 parallel environments for general relocate-
via-touch involve mutually different object shapes. With a
state space agnostic of the object shapes at all, the agent
receives mixed types of dynamics. This forces the agent to
discover a policy that is as universal as possible for all the
shapes in the dataset, which is likely to enhance the agent’s
generalizability towards unseen object shapes.
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Fig. 4: An overview of the RL framework on ArrayBot for general relocate-via-touch. The state is the combination of the estimated
object position, the specified target position, the residual goal direction, and the robot state in the frequency domain. Exempt from any
visual inputs, the states are inferred from purely proprioceptive observations of the robot joint configuration and the tactile sensor array.
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Fig. 5: (a) The training curves in terms of episode returns and survival steps. The results are averaged on 5 seeds. The shaded area stands
for the standard deviation. (b)(c) The example trajectories of the policies learned by (b) LAP+DCT-6 and (c) LAP only for flipping.

D. Simulated Experiments for Lifting and Flipping

Metrics. In lifting and flipping, we compare the averaged
accumulated returns and the survival steps of each episode.
The survival step refers to the steps an object could stay on
the robot without falling, whose maximum is 100.
Compared methods. To study the necessity of our reshaped
action space, we train the same PPO algorithm in the
following action spaces: (i) LAP only in the spatial domain;
(ii) LAP+DCT-25 that preserves all of the 25 channels in the
frequency domain; and (iii) LAP+DCT-6 that considers only
the 6 lowest-frequency channels.
Results. The learning curves of both tasks are shown in
Figure 5(a). In both tasks, the DCT-based approaches have
a significant advantage over the one trained in the spatial
action space in terms of both total returns and survival steps.
Further, the DCT-6 method survives longer and behaves
better than DCT-25, especially in the more challenging task
of flipping, echoing the intuition that low-frequency patterns
lead to more steady actions. By visualizing the flipping

trajectories in Figure 5(b)(c), we find that LAP only hacks the
environment and learns to gain rewards by throwing the block
off the robot in a rolling way. In comparison, the actions of
LAP+DCT-6 are more gentle and reasonable, which explains
its better performance and longer survival time.

E. Simulated Experiments for General Relocate-via-Touch

Metrics. We report the success rate of relocation on the
EGAD [25] test set containing 49 unseen objects. An episode
is judged to succeed if the object reaches the target position
and insists for at least 1 second. The results are averaged
over 200 trials with random initial and target positions.
Results. The form of success rates shown in Figure 6
follows the same taxonomy as the EGAD dataset where
the grasping difficulty and shape complexity of objects is
alphabetically and numerically sorted. Our findings are as
follows: (i) ArrayBot achieves relatively high success rates
on the majority of easy (Level A∼D) objects even when the
shape complexity is high (e.g., A6). This is probably because
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Fig. 6: (Left) The success rates of the general relocate-via-touch
policy evaluated on the previously unseen EGAD [25] testset in the
simulated environment. (Right) Visualization of some representative
objects in the dataset and their corresponding success rates.

the shapes of these objects can be largely enveloped by some
simple convex shape primitives such as sphere or cube, which
can be more easily handled by the mixture of sliding and
rolling policy that RL discovers. (ii) ArrayBot is generally
not good at manipulating objects that are extremely hard for
grasping (i.e., Level G). In contrast to easier instances in the
dataset, the shape outlines of objects on Level G are typically
very flat and concave (e.g., G2 & G6), which are unfriendly
to both grippers and ArrayBot. (iii) Specific objects hard
to grasp are relatively easy for ArrayBot (e.g., F3 & F4),
which implies ArrayBot might have complementary ability
compared with existing manipulators such as arms or hands.

Considering all the shape variations are handled by the
same policy and none of the objects is shown to the RL
agent at training time, we believe ArrayBot has demonstrated
much capability of generalizable manipulation, and thus is
ready for the policy deployment on the physical machine.

V. DEPLOYING THE CONTROL POLICIES

A. Zero-Shot Sim-to-Real Transfer

Intriguingly, we find that the general relocate-via-touch
policy trained on the EGAD dataset in the simulator can
be directly deployed to the physical robot without further
sim-to-real fine-tuning. To strengthen the significance of our
finding, we exempt the usage of domain randomization [37],
which is accepted as a critical technique for the successful
sim-to-real transfer of many RL-discovered policies [29], [3].

Intuitively, there are two main sources that the sim-to-
real gaps originate from: perception and motion dynamics.
Our selection of proprioceptive observations and binarized
tactile measurements keeps the discrepancies in perception
at a low level. Meanwhile, both the diverse shapes in the
training stage and the massive redundancy in the action space
contribute to the resilience towards the shift in dynamics.

B. Experiments on the Physical Robot

For quantitative evaluation of the general relocate-via-
touch policy deployed to the physical robot, we casually
place the manipulated object in an initial position and require
the policy to translate it to a specified target position. We

Weight (g) Hard-Coded RL-Discovered

Melon 449 4/10 9/10
Pineapple 550 6/10 8/10
Dragon Fruit 369 7/10 8/10
Rugby 244 10/10 7/10
Cube 391 0/10 5/10

Overall - 54% 74%

TABLE I: The success rates of the hard-coded and RL-discovered
general relocate-via-touch policy evaluated on the physical robot.
The selected objects at test time are unseen in the training proce-
dure, whose weights and sizes (half-extents) range from 224∼550 g
and 3∼5.5 cm, respectively.

select five diverse-shaped daily-life objects for evaluation:
melon, pineapple, dragon fruit, rugby, and cube. For each
object, we run 10 trials and then report the success rate.

For ablation and comparison, we design a hard-coded
policy where the pillars are scripted into the shape of a
“cage” carrying the manipulated object. We manually set the
moving trajectory of the “cage” and hope that the object can
be manipulated alongside the pre-programmed course.

The success rates are reported in Table I. Overall, the
performance of the RL-discovered policy is more consistent
in the face of object shape variations, and on average
outperforms that of the hard-coded policy by 20%. We
find that the performance of the hard-coded policy is more
sensitive to the sizes and shapes of the manipulated objects.
If the object happens to fit the space of the “cage” (e.g.,
the rugby), then it can be well manipulated by the hard-
coded policy. Otherwise, the object may slide out of the
“cage”, leading to failed trials. Besides, for both hard-coded
and RL-discovered policy, we observe a failure mode where
some protruding parts of the objects may get stuck into
the gaps between the pillars, thus hindering subsequent
manipulation. We expect the problem can be alleviated by
hardware iterations equipped with end-effectors whose sizes
are reduced so that enhanced manipulation granularity can
be provided.

C. Derived Real-World Manipulation Skills

Leveraging the general relocate-via-touch policy deployed
to the real world, we manage to further demonstrate the
merits of ArrayBot by presenting the following derived
manipulation skills on the physical robot:

• Trajectory following. Trajectory following can be easily
achieved by the iterative calls of the general relocate-
via-touch policy. Note that ArrayBot is more friendly to
incremental operations since its efforts are in proportion
to the traveled distance. In comparison, slight operations
are the same troublesome as longer-range movements
for arms or hands since the costs in “pick” and “place”
are constants whatever the scale of the operations.

• Manipulating objects in parallel. Consisting of a large
number of actuators, ArrayBot inherently supports par-
allel manipulation. Thanks to the spatial self-similarity
in the mechanical structure, the same control policy
automatically adapts to all local patches. Assuming



(a)

(b)

Fig. 7: Real-world trajectories of the manipulation tasks showing the robustness of our system to the impacts of (a) unexpected external
forces (b) severe visual degradations. For more detailed visual illustrations, please refer to the project website.

collision-free target trajectories, manipulating objects in
parallel is as easy as initializing multiple independent
manipulation processes. More complicated collision-
involved settings are left for future work.

• Manipulation under visual degradations. We point out
the fact that the performance of ArrayBot is unaffected
by visual degradations, which is a concrete benefit
brought by using tactile-only observations.

VI. RELATED WORKS

Distributed manipulation controls the motion of the target
object through numerous points of contact [7]. Composed of
an array of stationary unit cells, a distributed manipulation
system is able to be scaled in size and inherently support
manipulation in parallel. Reviewing the literature, the major-
ity of distributed manipulation systems consist of an array
of special-purpose actuators such as vibrating plates [6], air
jets [21], roller wheels [22], electromagnets [27] and delta
robots [36], [28]. While they are designed to be skilled
in specific types of manipulation tasks, they are typically
not versatile enough and demand elaborately pre-defined
motion primitives. Compared with the prototypes in robotics
research, the hardware of ArrayBot is more related to the
branch of works known as the “shape-changing tangible user
interfaces” [12], [19], [35] in the human-computer interface
community, where the actuators are vertically prismatic pil-
lars. The simplicity in design not only makes it easier to
manufacture; its organized action space also helps open the
door to learning motion policies with model-free RL.
Learning in the frequency domain is a concept discussed
in a variety of scopes in the machine learning community.
In computer vision studies, frequency transformations are
adopted to bridge the gap between high-quality images and
down-sampled ones [40], and help achieve more accurate
gradient approximations in Binary CNNs [41]. In the topics
of reinforcement learning, the concept of frequency is uti-
lized to boost the efficiency of search-control in model-based
architectures [26], and represent the characteristic function
of returns for distributional RL [10]. In contrast to all the
existing works that we have found, frequency transformation
is leveraged in ArrayBot for action space reshaping, aiming
at reformative sample efficiency in model-free RL.

VII. DISCUSSION ON POTENTIAL APPLICATIONS

In the industrial scenario, ArrayBot could serve as an
integrated conveyor and sortation system. Current solutions
for automated sortation systems generally rely on a vision-
based perception module and an execution module consisting
of a robotic arm and a specialized end-effector [8]. Compared
with the solutions on the market, ArrayBot could: (i) avoid
the challenges in grasping irregular objects by directly sort-
ing objects on the conveyor, (ii) manipulate numerous objects
in parallel to boost the sortation efficiency, (iii) operate in
the dark or under dramatically varying lighting conditions.

In the household scenario, ArrayBot can facilitate the users
by either manipulating the tabletop objects or altering its
own shape according to their needs. For instance, when a
cellphone placed on ArrayBot receives a new message and
vibrates, ArrayBot can detect the vibration through tactile
sensors and then push the cellphone to the user’s side. This
application may also apply to other tools in the daily life.

VIII. LIMITATIONS AND FUTURE WORK

A prominent limitation of the ArrayBot prototype is the
non-negligible 16 mm side length of the end-effector (EE)
and the 4 mm gap in between. Coarse-grained EEs not only
are to blame for the main failure modes in the relocation task,
but also makes it impossible to manipulate objects smaller
than the EE itself. Meanwhile, very lightweight objects might
not be detected by the FSR tactile sensor due to its limited
measuring precision. The problem is deteriorated by the fact
that pressures might be shared by multiple sensors. In the
future, we will make efforts to reduce the EE size and gap
space as well as improve the precision of the tactile sensor
so that we can explore the greater potential of ArrayBot for
more dexterous manipulation tasks.

IX. CONCLUSION

We present ArrayBot, an RL-driven distributed manipula-
tion system via tactile sensing. In the simulator, we develop
policies for lifting, flipping, and generalizable relocate-via-
touch in the proposed reshaped action space, and then
successfully deploy the policies to the physical robot with-
out much sim-to-real fine-tuning. Leveraging the deployed
relocation policy, we showcase the distinctive merits of our
ArrayBot through derived real-world manipulation skills.

https://steven-xzr.github.io/ArrayBot/


REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform.
IEEE transactions on Computers, 100(1):90–93, 1974.

[2] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum,
and A. Rodriguez. Augmenting physical simulators with stochastic
neural networks: Case study of planar pushing and bouncing. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3066–3073. IEEE, 2018.

[3] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al.
Learning dexterous in-hand manipulation. The International Journal
of Robotics Research, 39(1):3–20, 2020.

[4] D. R. Barr, D. Walsh, and P. Dudek. A smart surface simulation
environment. In 2013 IEEE International Conference on Systems,
Man, and Cybernetics, pages 4456–4461. IEEE, 2013.

[5] A. Billard and D. Kragic. Trends and challenges in robot manipulation.
Science, 364(6446):eaat8414, 2019.

[6] K.-F. Bohringer, V. Bhatt, and K. Y. Goldberg. Sensorless manip-
ulation using transverse vibrations of a plate. In Proceedings of
1995 IEEE International Conference on Robotics and Automation,
volume 2, pages 1989–1996. IEEE, 1995.
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